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Workshop Aims

• Learn to identify hierarchical data

• Discuss the implications of violating the assumption of
independence

• Modelling strategies considering lack of independence as a data
nuisance problem to be adjusted

− robust standard errors

• Modelling strategies considering lack of independence as a
substantively interesting process to be modelled

− multilevel modelling (aka hierarchical, random effects, or mixed
effects models)
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Workshop Aims: Recap

• Assumptions in the linear regression model (Y = α+βkXk + e):

− normality: residuals are normally distributed

− homoskedasticity: the variance of the residuals is constant

− independence: residuals are independent of each other

− no multicollinearity

− perfectly measured variables

− no missing data (other than missing at random)

− no unobserved confounders: we control for all common causes of
X1 and Y

− no reverse causality: Y does not cause X1

− linearity: the effect of X1 on Y is the same across the range of
X1
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Hierarchical Data

• When cases composing a sample can be grouped within clusters

− e.g. students within modules within programs

− this class is not an independent sample of the University of
Leeds student body

− as a result of - or because you are - taking part in this module
you share some commonalities (within-cluster correlation) that
make you different from other students

− additional within correlations could be expected from being
enrolled in a Sociology/ Criminology program

− and the same applies to other students in different modules and
programs

• Question: can you think of any other examples of hierarchical
data?

− interviewees within regions within countries

− sentences imposed by judges sitting in courts

− any instance where cluster sampling is used
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Hierarchical Data

The Hierarchical Structure of Sentencing Data
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Hierarchical Data

Source: Francesca Dominici

• Cases across this sample are not independent

• Cases within the same cluster are related to each other

http://www.biostat.jhsph.edu/~fdominic/teaching/bio656/ml.html
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Hierarchical Data: Notation

• We need different subscripts to distinguish units at different
levels

− for the case of sentencing data we have considered three levels

− court: l = 1, 2, 3, ..., L

− judge: j = 1, 2, 3, ..., Jl

− sentence: i = 1, 2, 3, ..., Ilj

• We will use these to identify values in our outcome, explanatory
variables and residuals

− Ylji = β0 + βkXklji + elji︸︷︷︸
vl+ulj+ϵlji

− notice how the residual term can now be partitioned to reflect
the unobserved variability stemming from each level
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The Assumption of Independence

• To estimate the standard errors of regression coefficients we use
the variance covariance matrix

− a matrix of the residuals’ variances and covariances for each
observation, for a simplified model of only n = 3 we have var(e1) cov(e1, e2) cov(e1, e3)
cov(e2, e1) var(e2) cov(e2, e3)
cov(e3, e1) cov(e3, e2) var(e3)



− under the assumption of homoskedasticity and independenceσ2
e 0 0
0 σ2

e 0
0 0 σ2

e


− under two level hierarchical data the diagonals will be equal to

σ2
ϵi

+ σ2
uj

and the 0s equal to σuj,uj

− assuming independence in the presence of hierarchical data will
lead to ‘naive’ findings

− underestimated measures of uncertainty (smaller SEs, narrower
CIs, higher chance of type I errors)
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Type I & II Errors

Source: Paul Ellis ‘Effect Sizes’

https://effectsizefaq.com/2010/05/31/i-always-get-confused-about-type-i-and-ii-errors-can-you-show-me-something-to-help-me-remember-the-difference/
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Strategies to Adjust for Within-Cluster
Correlation

• Three main choices, all with pros and cons

• Robust standard errors (the ‘sandwich estimator’)

− each variance and covariance is estimated empirically

eji = Yji − β0 − βkXkji

− pros: provides robust SEs

− cons: within-cluster correlation is seen as a data nuisance, i.e. we
do not model and learn about these correlations

• Fixed effects models

− clusters are included in the model as dummy variables

Yji = β0 + βkXkji + βjXji + eji

− pros: can model mean differences in the outcome by cluster

which can be substantially interesting; e.g. which is the
neighbourhood with higher alcohol consumption?

can control for cluster-level confounders; e.g. we might want to
explore the effect of social class on alcohol consumption, which
can be confounded by type of neighbourhood

− cons: can lead to overfitted models



Workshop Aims

Hierarchical
Data

The Assumption
of Independence

Adjustment
Strategies

Multilevel
Modelling

Recap

10-18

Strategies to Adjust for Within-Cluster
Correlation

• Three main choices, all with pros and cons

• Robust standard errors (the ‘sandwich estimator’)

− each variance and covariance is estimated empirically

eji = Yji − β0 − βkXkji

− pros: provides robust SEs

− cons: within-cluster correlation is seen as a data nuisance, i.e. we
do not model and learn about these correlations

• Fixed effects models

− clusters are included in the model as dummy variables

Yji = β0 + βkXkji + βjXji + eji

− pros: can model mean differences in the outcome by cluster

which can be substantially interesting; e.g. which is the
neighbourhood with higher alcohol consumption?

can control for cluster-level confounders; e.g. we might want to
explore the effect of social class on alcohol consumption, which
can be confounded by type of neighbourhood

− cons: can lead to overfitted models



Workshop Aims

Hierarchical
Data

The Assumption
of Independence

Adjustment
Strategies

Multilevel
Modelling

Recap

10-18

Strategies to Adjust for Within-Cluster
Correlation

• Three main choices, all with pros and cons

• Robust standard errors (the ‘sandwich estimator’)

− each variance and covariance is estimated empirically

eji = Yji − β0 − βkXkji

− pros: provides robust SEs

− cons: within-cluster correlation is seen as a data nuisance, i.e. we
do not model and learn about these correlations

• Fixed effects models

− clusters are included in the model as dummy variables

Yji = β0 + βkXkji + βjXji + eji

− pros: can model mean differences in the outcome by cluster

which can be substantially interesting; e.g. which is the
neighbourhood with higher alcohol consumption?

can control for cluster-level confounders; e.g. we might want to
explore the effect of social class on alcohol consumption, which
can be confounded by type of neighbourhood

− cons: can lead to overfitted models



Workshop Aims

Hierarchical
Data

The Assumption
of Independence

Adjustment
Strategies

Multilevel
Modelling

Recap

11-18

Strategies to Adjust for Within-Cluster
Correlation

• Multilevel modelling (MLM)

− the error term at each level is partitioned and modelled
separately

Yji =

fixed part︷ ︸︸ ︷
β0 + βkXkji +

random part︷ ︸︸ ︷
uj + ϵji

− that’s why MLM are often called mixed or random effects
models, and why we called fixed effects models that way

− pros: if modelled properly can provide robust SEs

Allows modelling variability between and within clusters:

e.g.1 Are there between court inconsistencies in sentencing?

e.g.2 Are differences in happiness due to differences across
countries or individuals?

− cons: don’t control for cluster-level confounders

invoke further assumptions:

uj ∼ N(0, σu) ; cov(uj , uj′ ) = 0

ϵj ∼ N(0, σϵ) ; cov(ϵj , ϵj′ ) = 0

cov(ϵji, uj) = 0
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Random Intercepts
• The simplest form of MLM

− allows for the intercept to vary across clusters

− for the case of a 2-level MLM with one explanatory variable
could be expressed as

Yji =

β0+uj︷︸︸︷
β0j +β1X1ji + ϵji

− invokes the same assumptions listed in the previous slide

• Can be used to estimate the intracluster correlation coefficient

− ICC =
σ2
u

σ2
u + σ2

ϵ

− the proportion of unobserved variability in the outcome variable
(i.e. residual variability) stemming from level 2, e.g. the
proportion of sentencing disparities due to between judge
differences

− can also be understood as the correlation between observations
from the same cluster, e.g. the similarities between sentences
imposed by the same judge

• Can be extended to 3 or more levels

− Ylji =

β0+vl+ulj︷︸︸︷
β0lj +β1X1lji + ϵlji
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Random Intercepts
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Random Intercepts
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Random Slopes

• The RIs model can be extended by allowing between cluster
variability around the intercept but also around specific slopes

− for the case of a 2-level MLM with one explanatory variable
could be expressed as

Yji =

β0+u0j︷︸︸︷
β0j +

β1+u1j︷︸︸︷
β1j X1ji + ϵji

− as before, level-1 and level-2 residuals are assumed to be

u0j ∼ N(0, σu0) ; cov(u0j , u0j′ ) = 0

u1j ∼ N(0, σu1) ; cov(u1j , u1j′ ) = 0

ϵj ∼ N(0, σϵ) ; cov(ϵj , ϵj′ ) = 0

− however, now we might be interested in exploring whether
cov(u0j , u1j′ ) ̸= 0

− if positive the slopes will diverge, i.e. higher intercepts are
associated with higher slopes and vice versa

− if negative the slopes will converge, i.e. higher intercepts are
associated with lower slopes and vice versa
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Random Slopes (+cov)
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Random Slopes (-cov)
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Recap

• In the presence of hierarchical data the assumption of
independence does not hold

− measures of uncertainty will tend to be underestimated → type I
errors

• We have covered the three main adjustment strategies

− robust standard errors

− fixed effects

− multilevel modelling

• Robust standard errors (the ‘sandwich estimator’)

− provide unbiased measures of uncertainty (also in the presence of
heteroskedasticity)

− doesn’t control for systematic difference between clusters
(potential confounders)

− doesn’t tell us anything about between/within cluster variability

− to be used when cluster variability is not of interest (considered
a data nuisance)
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Recap

• Fixed effects

− partially adjust SEs while controlling for systematic differences
between clusters

− to be used when confounders are a serious concern

− can be used to compare means across clusters but not great at
assessing variability

− if the number of clusters is large will risk overfitting the model

• Multilevel modelling

− more flexible than fixed effects models at adjusting SEs

− does not control for systematic differences between clusters

− allow exploring susbtantive questions related to between/within
cluster variability

• To learn more about multilevel modelling

− read Goldstein (1995) Chapter 2

− and watch the online course from Brunton-Smith (2019)

− sign up for the LEMMA online course

https://www.bristol.ac.uk/media-library/sites/cmm/migrated/documents/multbook1995.pdf
https://www.ncrm.ac.uk/resources/online/random_coefficient_models/
https://www.cmm.bris.ac.uk/lemma/login/index.php
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